1(a)	large surface area/large area of contact/large surface;		
	more (successful) collisions (between catalyst and gases or between reacting gases) OR more active sites OR faster reaction/increase rate/increase speed;	2	I activation energy Second mark must be comparative
(b)	decre temperature/temperature below 450 °C/quoted temperature below 450 °C; increase pressure/pressure above 200 atm/quoted pressure above 200 atm;	2	I comments about concentration I low temperature and high pressure. Both answers must be comparative I explanations
(c)	decreased temperature would reduce rate/reaction slower/too slow;		A takes long <u>er</u> I slow (unqualified)
	increased <u>pressure</u> expensive/uneconomic/safety risks/leaks/explosions/ yield or rate good enough at lower pressure/strong pipes needed/thick pipes needed/sturdy pipes needed/requires a lot of energy;	2	I answers that do not refer to decreased temperature and increased pressure e.g. it is too expensive unless this is linked with pressure

(a) (i) pressure 150–300 atmospheres/atm (1) temperature accept in range 370 to 470 °C (1) iron (catalyst) (1) balanced equation $N_2 + 3H_2 = 2NH_3$ (1) equilibrium/reversible (1) [5] (ii) potassium/K (1) phosphorus/P(1) [2] burn fossil fuels/burn fuels containing sulfur/burn compounds containing (b) (i) sulfur/burn ores containing sulfur/roast metal sulfides/burn metal sulfides (1) sulfur dioxide/SO₂ (formed) (1) (form) sulfuric/H2SO4/sulfurous acid/H2SO3 (1) OR nitrogen and oxygen (in air) react at high temperatures/in jet engines/car engines/lightning. (1) (form) oxides of nitrogen (1) (form) nitric acid/HNO₃/nitrous acid/HNO₂ (1) [3] (ii) any **two** from: calcium oxide/lime/quicklime/CaO (1) calcium hydroxide/Ca(OH)₂/lime/slaked lime/limewater (1) calcium carbonate/CaCO₃/limestone/chalk/marble (1) [2] guidance: 'lime' can only be credited once. [Total: 12] (a (i) any metal above zinc $Mg \rightarrow Mg^{2+} + 2e$ [1] (ii) $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ [2] Note: not balanced only [1] (iii) because they can accept or gain electrons / change into atoms or can be reduced [1] (iv) Ag⁺ or silver [1] charge not essential but if given must be correct (v) Ag⁺ and Cu²⁺ or silver and copper [1] charge not essential but if given must be correct

	(b)		u Sn Cd Zn <i>(i.e. all 4 in correct order)</i> lates order to voltage	[1] [1]
		on	ne relevant comment from:	[1]
		po big	gher reactivity metals are the negative electrode / copper is least reactive becausitive electrode because copper would have the lowest voltage / copper cell V = gger the difference in reactivity, the bigger the voltage / zinc has highest voltage most reactive / more reactive metals have higher voltage	= 0 / the
				[Total: 9]
4	(a	(i)	fractional distillation (liquid) air	[1] [1]
	1	(ii)	cracking / heat in presence of catalyst of alkane / petroleum to give an alkene and hydrogen	[1] [1] [1]
			OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)	
			OR: from methane (1) react water / steam (1) heat catalyst (1) only ACCEPT: water with methane or electrolysis	
	(b)	(i)	the pair with both graphs correct is C NOTE: mark (b)(ii) independent of (b)(i)	[1]
	1	(ii)	high pressure favours side with lower volume / fewer moles this is RHS / product / ammonia %NH ₃ / yield increases as pressure increases	[1] [1] [1]
			the forward reaction is exothermic exothermic reactions favoured by low temperatures %NH ₃ / yield decreases as temperature increases ACCEPT: reverse arguments	[1] [1] [1]
	((iii)	increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy particles need to react OR: economic rate at lower temperature so higher yield	[1] [1]
			· · · · · · · · · · · · · · · · · · ·	[Total: 14]

4	(a	(i)	the (forward) reaction is endothermic	[1]
		(ii)	none volume of reactants and products the same ACCEPT: number of moles or molecules	[1] [1]
		(iii)	the reaction (between oxygen and nitric oxide) is <u>exothermic</u> high temperatures push equilibrium to left / high temperatures decrease yield of produ/low temperatures favour forward reaction	[1] ucts [1]
		(iv)	$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ not balanced = (1) only	[2]
		(v)	(cost of) high amount of electricity / energy	[1]
	(b)	(i)	contains more nitrogen	[1]
		(ii)	photosynthesis chlorophyll is catalyst / chlorophyll absorbs light carbon dioxide and water react to make glucose / carbohydrates / starch / sugar / named sugar	[1] [1] [1]

[Total: 13]

5	(a)	(ma	aking) fertilisers / nitric acid / nylon / refrigeration / explosives / cleaning products;	[1]
	(b)	wat	ane / named alkane; er / steam; it / catalyst;	[1] [1] [1]
		sug	electrolysis; gest suitable electrolyte; (allow: water) rogen at cathode;	[1] [1] [1]
		alka	cracking; ane / named alkane; it or catalyst	[1] [1] [1]
	(c)	-	r five from: eer; (rate)	[1]
		mor	re collisions / molecules closer together / more particles per unit volume;	[1]
		•	lisions) more frequent / more often / more chance / more effective or successful isions / more collisions with Ea / increase rate of collisions;	[1]
		_	ner yield / moves (equilibrium) to RHS / more ammonia / to side of products / high ssure favours the reaction with less moles;	[1]
			s moles / molecules / volume on RHS ORA (can be implied in previous nments)	[1]
		_	n pressure means lower temperature can be used to achieve comparable rate us saving energy);	[1]
6	(d)	(i)	endothermic takes in / absorbs / uses / needs / gains energy / heat and exothermic gives out / loses energy / heat;	[1]
		(ii)	2328 (ignore + or $-$) / 6 × 388 (not evaluated);	[1]
			944 + 1308 / 2252 and endothermic and exothermic in table;	[1]
			2328>2252 or (-) 76 kJ;	[1]
		 or energy of products / RHS > reactants / LHS or energy needed to break bonds < energy given out on formation of bonds. [Total: 13] 		